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Abstract: This article presents a methodological approach to modeling the processes of changing
the dispersed composition of solid phase particles, such as granulation, crystallization, pyrolysis,
and others. Granulation is considered as a complex process consisting of simpler (elementary)
processes such as continuous particle growth, agglomeration, crushing and abrasion. All these
elementary processes, which are also complex in themselves, usually participate in the formation
of the dispersed composition of particles and proceed simultaneously with the predominance of
one process or another, depending on the method of its organization and the physicochemical
properties of substances. A quantitative description of the evolution of the dispersed composition
of the solid phase in technological processes in which the particle size does not remain constant
is proposed. Considering the stochastic nature of elementary mass transfer events in individual
particles, the methods of the theory of probability are applied. The analysis of the change in the
dispersed composition is based on the balanced equation of the particle mass distribution function.
The equation accounts for all possible physical mechanisms that effect changes in particle size during
chemical and technological processes. Examples of solutions to this equation for specific processes of
practical importance are provided. The obtained analytical solutions are of independent interest and
are in good agreement with the experimental data, which indicates the adequacy of the proposed
approach. These solutions can also be used to analyze similar processes. The effectiveness has been
confirmed during the analysis and calculation of the processes of granulation of various solutions
and disposal of oil-containing waste to obtain a granular mineral additive.

Keywords: distribution function; integral transformation core; granulation; growth rate; abrasion;
fluidized bed; dispersed composition; agglomeration; particle crushing

1. Introduction

Many chemical-technological processes involving the solid phase entail a change in the
size of the dispersed particles. These include the processes of crystallization, dissolution,
drying, combustion, pyrolysis, gasification, abrasion, and a number of others [1–7]. A
change in the dispersed composition of the solid phase during the process can affect it
via several mechanisms such as the kinetics of the process, a decrease or increase in the
specific interfacial surface area, or a change in the nature of the movement of phases
in the working volume. Oftentimes, this influence is so great that it cannot be ignored
when estimating and designing industrial processes. For example, during the processes
of combustion, pyrolysis and gasification, highly significant changes occur in the size of
particles. Solid phase particles can change numerous times and this must be considered to
ensure hydrodynamic stability, especially if the processes are carried out in apparatuses
with a fluidized bed. In some cases (granulation, grinding), the change in the dispersed
composition of solid particles is the essence of the process, which should lead to the
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solution of a specific technological problem. Such processes are widely used for recycling
waste in order to obtain useful products. For example, granulation allows for the use of a
fine-dispersed fraction (dust) as a raw material and by this process, a finished product in
the mineral fertilizers industry can be obtained. Similarly, during wastewater treatment,
granular organic fertilizers are obtained by means of convective drying in a fluidized bed
of activated sludge These types of combined processes of drying and granulation look very
promising and proceed with lower energy consumption [1], as they occur simultaneously
in one apparatus. Otherwise, the solution would have to be dried first, and only then
would the obtained powder be sent for granulation in another apparatus—a granulator.
During a combined process, the granulated product is obtained immediately at the outlet
of the apparatus.

The change in the granulometric composition of solid particles can be associated with
a variety of physical phenomena such as crushing, agglomeration, abrasion, shrinkage,
dissolution, etc. Under conditions of intensive hydrodynamic regimes, these phenomena
are stochastic and cannot be quantitatively described at the level of a single particle.
Therefore, in order to describe the evolution of the dispersed composition of particles
it seems natural to use the theory of probability. Previously [1,2,8–14], this approach
convincingly proved its effectiveness in modeling processes across various industries. As
for the application of mathematical models based on the numerical integration of CFD data
for research, these methods have undeniably great capabilities and a degree of universality.
However, analytical solutions, whenever they can be obtained, simplify tracing of the
dependence of the process on various parameters and can help to quantitatively to describe
the real process in some extreme cases. The use of mathematical models based on neural
networks (AAN) is a fairly effective analysis tool in most cases. However, when studying
chemical and technological processes, their use is unjustified as it is not based on the
physical content of the phenomena that constitute the essence of the process.

In addition, a number of papers suggest using the Monte Carlo method to analyze
agglomeration processes [15–18]. The literature also presents mathematical models of
changes in the dispersed composition based on balance equations which, from a physical
point of view, describe such processes more adequately, but are formulated for concrete
technological processes and account for their specificity [19–26]. However, the proposed
mathematical models are specific rather than universal in nature and are only applicable to
certain cases of process organization. Therefore, the main aim of this work is to develop a
unified methodological approach to the theoretical analysis of the processes of evolution
of the dispersed composition, which would assist in designing accurate mathematical
representations of a particular process and to describe it quantitatively with regard to the
specificities of the accompanying phenomena.

2. Theoretical Analysis and Methods

For a quantitative description of the change in the dispersed composition of particles
caused by several phenomena of different physical nature, the principle of superposition
can be used. In this case, the velocity of change in the distribution function of the number
of particles by mass is equal to the sum of the velocities of individual processes:

∂F
∂t

= ∑k
i=1

(
∂F
∂t

)
i

This approach to the mathematical modeling of processes described by linear, quasi-
linear differential and integro-differential equations can describe a complex composite
process using kinetic equations for individual processes.

Generally, the change in the dispersed composition of the solid phase in a continuous
or periodic apparatus is described by equation [1,2]:

∂ f
∂t

+ div
(
→
w − Dp

→
∇
)

f +
∂

∂m

(
u− ∂

∂m
Dm

)
f = I+ − I− (1)
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where f
(→

r , m, t
)

is the particle distribution function by mass m (size). By definition of the

distribution function, the expression f
(→

r , m, t
)

dm is the number of particles with a mass
in the range (m, m + dm) per unit of the working volume of the apparatus in the vicinity of a
point with a radius vector

→
r at time t. In Equation (1),

→
w is the average velocity of the solid

phase, Dp is the mixing coefficient of the solid phase (it is assumed that it is the same for all

directions), and u
(→

r , m, t
)

is the total average rate of continuous particle growth, which
can occur both due to the adhesion of small particles to large ones and the deposition of the
solid phase from solutions on their surface. The Dm coefficient (diffusion coefficient in the
mass space) accounts for variations in the growth rate of individual particles. The terms
I+ and I− on the right side of the equation are responsible for the change in particle size
due to coagulation and crushing, respectively. If k(t,

→
r , m, s) is used to denote the density

of probability of agglomeration of two particles with masses m and s per unit time, and
g(t,

→
r , m, m − s, s) is used to denote the density of probability of crushing a particle with

mass m into two fragments with masses m − s and s, then the values I+ and I− take the
following forms:

I+ =
1
2

∫ m

0
k
(

t,
→
r , m− s, s

)
f
(→

r , m− s, t
)

f
(→

r , s, t
)

ds +
∫ ∞

m
g
(

t,
→
r , s; s−m, m

)
f
(→

r , s, t
)

ds, (2)

I− =

[
1
2

∫ m

0
g
(

t,
→
r , m; m− s, s

)
ds +

∫ ∞

0
k
(

t,
→
r , m, s

)
f
(→

r , s, t
)

ds
]

f
(→

r , s, t
)

. (3)

Equations (1)–(3) are quite general in nature and can be used to quantitatively describe
the evolution of the dispersed composition of the solid phase for many chemical and
technological processes with regard to the specific conditions for their implementation.
This will be illustrated over several examples.

We applied the proposed approach to the analysis of the granulation process in a
flow apparatus of ideal mixing in the solid phase. We assumed that the formation of new
centers of granule formation occurs due to the crushing of particles. For crushing occurring
in an external circuit, for example, in roller crushers, an analysis is presented in [22]. If
crushing is caused by the collision of particles, or thermal stresses inside the particles
while agglomeration and abrasion are practically absent, then such conditions are close
to the conditions for conducting a continuous process of dehydration of solutions and
suspensions in a fluidized bed [27]. At the same time, Equation (1) will be significantly
simplified for the stationary mode [1]:

d
dm

uφ +

[
1
T
+

1
2

∫ m

0
g(m, m− s, s)ds

]
φ(m) =

∫ ∞

m
g(s; s−m, m)φ(s)ds. (4)

Here, ϕ(m) is the density of particle distribution by mass: φ = f (m)
N ,

∫ ∞
0 φ(m)dm = 1;

N is the number of particles in the apparatus; T is the average time of residence of the
particles in the working volume. It is natural to assume that the probability of crushing a
particle is proportional to its mass, since with increasing particle size the inhomogeneities
inside the particle also increase. The density of probability of crushing is then a constant:
g(t,

→
r , m, m − s, s) = g0 = const. In this case, Equation (4) can be formulated as follows:

d
dm

uφ +
1
T

φ(m) +
1
2

mg0φ(m) = g0

∫ ∞

m
φ(s)ds. (5)

Experimental studies [28] have established that when granulating solutions in a flu-
idized bed, the velocity u(m) of particle growth can be approximated by the ratio:

u =
dm
dt

= Amn (6)



Mathematics 2022, 10, 994 4 of 12

in which the indicator n, depending on the organization of the movement of the solid
phase in the apparatus, takes values from 0 to 1. More specifically, n = 2/3 in the fluidized
bed and n = 1 in the gushing bed. Considering the Dependence (6), Equation (5) can be
solved numerically. However, an analytical solution can also be extended to both extreme
cases: n = 0 and n = 1. The explicit form of such solutions leads to the conclusion about
the limiting behavior of particle distribution functions in actual processes. For n = 0 the
solution to Equation (5) satisfying the condition ϕ(0) = 0 is the function:

φ(m) = g0T
(

ξ +
ξ2

2

)
exp

[
−
(

ξ +
ξ2

2

)]
, (7)

where ξ = m
m = m

uT is the dimensionless parameter and m is the average mass of the
particles. The Ratio (7) allows to determine all parameters of the distribution of solid phase
particles at the outlet of the apparatus.

At n = 1, when the particle growth rate is proportional to its size (u = Am), the solution
to Equation (5) has the form:

φ(m) =
g0

2A
exp

[
− g0

2A
m
]
. (8)

Another example of the effectiveness of Equation (1) in the quantitative description
of real practically important processes that are accompanied by a change in the dispersed
composition of the solid phase is in the analysis of particle agglomeration in the processing
of powdered materials. Many works are currently devoted to the study of agglomera-
tion [29–44]. When agglomerating particles are placed in a flow apparatus of ideal mixing,
Equation (1) is simplified and can be formulated as follows:

∂ f
∂t

+
1
T

f + f
∫ ∞

0
k(m, s) f (s, t)ds =

1
T

f0(m, t) +
1
2

∫ m

0
k(m− s, s) f (m− s, t) f (s, t)ds (9)

where f 0(m, t) is the density of the distribution function of the incoming particle flow.
If the density of probability of coagulation of two particles is considered as a constant
k(m, s) = k0 = const then the Solution (9) for the steady-state regime can be presented
as follows:

f (m) =
N0√

1 + 2Tk0N0

∞

∑
i=1

(
2Tk0N0

1 + 2Tk0N0
)

i−1 2Γ
(

i + 1
2

)
√

π(2i− 1)Γ(i + 1)
. (10)

Here, N0 is the number of particles entering the apparatus per unit of time and G(x)
is the gamma function. Expression (10) is used to calculate the number of particles in
the apparatus depending on their average time of residence in the working volume, their
average mass, as well as estimate the degree of polydispersity of the coagulating particle
system. The latter characteristic is determined by the relative dispersion, which in the case
under consideration is equal to:

(
σ

m
)

2
=

2N0

N
− 3 +

N
N0

[(
σ0

m0

)2
+ 1

]
,

where the index “0” refers to the flow of particles entering the apparatus. It follows from
this expression that with the increase in the probability of the coagulation of particles
(i.e., with the decrease in the number of particles N), the degree of polydispersity of the
coagulating system increases.

The examples given illustrate the possibility of analytical solutions to Equation (1)
in cases where the change in the dispersed composition of solid phase particles is caused
mainly by either crushing or coagulation. However, many processes become complicated
when coagulation and crushing of solid phase particles occur simultaneously. Such a
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situation may occur, for instance, when a granulation process is conducted in a flow
apparatus of ideal displacement. In this case, Equation (1) takes the form [45]:

∂ f (m,l,t)
∂t + w ∂ f (m,l,t)

dz + f (m, l, t)
∫ ∞

0 k(m, s) f (s, l, t)ds + 1
2 f (m, l, t)

∫ m
0 g(m− s, s)ds

= 1
2

∫ m
0 k(m− s, s) f (m− s, l, t) f (s, l, t)ds +

∫ ∞
m g(s−m, m) f (s, l, t)ds.

(11)

Here, z is the longitudinal coordinate. Equation (11) should be supplemented with
expressions for probabilities k(m, s) and g(m − s, s). The expression for the probability
of coagulation of two particles with masses m and s per unit time should account for the
fact that the formation of large particles is unlikely, while the collision of two very small
particles with a sufficient amount of binder will almost certainly lead to their adhesion.

With regard to this assumption, the kernel of the integral transformation for coagula-
tion can be approximated by the expression:

k(m, s) = e−B(m+s) (12)

The coefficient B in this expression depends on the conditions of the process including
the amount of the binder.

The probability of crushing a particle clearly increases with an increase in its mass,
since this entails an increase in the number of inhomogeneities inside it, the number
of microcracks, local stresses, and so forth. For this reason, the kernel of the integral
transformation for splitting g(m − s, s) can be represented by the following expression:

g(m − s, s) = s(m − s)(1 − e−Cm), s < m
g(m − s, s) = 0, s > m

(13)

The coefficient C depends on the intensity of the mechanical influences on the granules.
At the same time, it is assumed that the fragmentation of a particle into two fragments
of similar masses is more likely than its fragmentation into fragments of vastly different
masses. Accordingly, abrasion is entirely excluded by the proposed models.

For calculating a specific process, the coefficients B and C can be found experimentally
based on the results of specially conducted experiments [45].

For known constant values B and C Relations (12) and (13) close Equation (11). The
solution to the equation with respect to f (m, z, t) can determine the dynamics of changes
in the mass (size) of particles along the course of movement of the processed material
under conditions of the competing actions of the following two processes: coagulation and
crushing. At the same time, for a continuous steady-state granulation process, the explicit
form of the dependence f (m, z) can help to locate the cross-section of the apparatus where
crushing begins to prevail over coagulation. For a periodic process under conditions of ideal
mixing, it is not difficult to determine the moment in time when the dynamic equilibrium
between the processes of coagulation and crushing is established by the explicit form of the
dependence f (m, t). At the same time, the derivative ∂ f (m,t)

∂t turns to zero and Equation (11)
can be represented as:

f (m) =
1
2

∫ m
0 k(m− s, s) f (m− s) f (s)ds +

∫ ∞
m g(s−m, m) f (s)ds∫ ∞

0 k(m, s) f (s)ds + 1
2

∫ m
0 g(m− s, s)ds

(14)

which uses the method of successive approximations to find the equilibrium function f (m).
The solution of this equation allows to determine the final granulometric composition
of particles in the periodic granulation process as well as its dependence on the process
parameters. As a first approximation of the solution of this equation, it is natural to consider
the function:

f1(m) = N_ A2me−Am (15)
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(Np is the number of particles in the working volume of the apparatus under dynamic
equilibrium conditions) which automatically satisfies the conditions for normalization:∫ ∞

0
f1(m)dm = Np

Substitution of the Relations (12), (13) and (15) to the right side of Equation (14) and the
subsequent integration of the second approximation of the equilibrium function f (m) gives:

f 2(m) = f 1(m)ϕ(m)

where the factor ϕ(m) connecting the first and second approximations has the form:

ϕ(m) =

1
12 A2m2e−Bm +

[
m
A2 − me−Cm

(A+C)2 +
2

A3 − 2e−Cm

(A+C)3

]
A2e−Bm

(A+B)2 +
1

12 m3(1− e−Cm)

The obvious requirement for the behavior of f 2(m) and f 1(m) at m → 0 to coincide
leads to the following equation that must be satisfied by the constant A in Expression (17):(

A
1A + C

)3
+

A3

2

(
A

A + B

)2
= 1. (16)

Consequently, the root of this equation, found after determining the empirical con-
stants B and C, together with Relation (15) results in an explicit form of the first approxima-
tion for the equilibrium function f (m). Simple calculations show that the function ϕ(m)→ 0
at m→ ∞ is close to unity at small values of the variable m. Therefore, the Dependence (15)
can be used to analyze the distribution of granules by mass (size) at the stage of the process
when the intensity of particle crushing is comparable to the rate of granulation. Specifically,
the average mass of granules is equal to:

mp =
1

Np

∫ ∞

0
f1(m)dm =

1
Np

∫ ∞

0
A2m2e−Amdm =

2
A

. (17)

The modelling of the continuous growth of large particles only at the expense of a
small fraction is of great practical interest. In this case, the right side of Equation (1) equals
zero, which takes the following form:

∂ f
∂t

+ div
(
→
w − Dp

→
∇
)

f +
∂

∂m

(
u− ∂

∂m
Dm

)
f = 0 (18)

For apparatuses with an ideal mixing of the solid phase, the equation will include the
average residence time T of particles in the working area:

∂ f
∂t

+
1
T

f +
∂

∂m
u f =

1
T

f0(m, t) +
∂2

∂m2 DmF.

Under steady-state conditions, the last equation has the exact solution:

f (m) =
1

Tu(m)

∫ m

m0

f0(ζ) exp(−
∫ m

ζ

dη

Tu(η)
)dζ (19)

which is correct in the case when the diffusion in the mass space can be neglected. It can
be shown [46] that this is exactly the case when condition Tu >> m0—where m0 is the
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mass of a fine fraction particle—is satisfied. The Ratio (19) for the case of a monodispersed
composition of large particles and a constant growth rate will take the form:

f (m) =
N0

Tu
e−

m−m0
Tu (20)

In the processes of granulation and particle enlargement, it is often more convenient
to determine the particle distribution function not by mass, but by radius. Equation (19)
is invariant with respect to the replacement of m by r, which is the radius of the particle.
Consequently, Solution (20) will also be invariant, except in this case, the particle growth
rate will be linear rather than mass-related. Moving from the mass of the particle to its
radius we get:

f (r) =
N0

v
4πr2e−

(r3−r3
0)

Tu ∗ 4π
3 (21)

Here, v = Tu, f (r) is the differential function of the particle distribution over r—the
radius of the particle.

3. Results and Discussion

The obtained solutions required experimental verification for a wide class of chemical
and technological processes under various conditions of implementation. For this purpose,
experimental studies were conducted using technological devices of several types. The
results of an experimental study of a cycle-free granulation process with an internal source
of granulation in a gushing bed apparatus are given in [1]. In the experiments, a disodium
phosphate solution was used, which was fed into the lower part of the apparatus, directly
into the fountain core using a pneumatic nozzle. The drying of the solution falling onto the
granules occurred very quickly, which ensured the continuous growth of granules in the
apparatus. As the nuclei of granulation, small particles of granules were used, which were
formed in the apparatus as a result of volumetric and thermal crushing of the granules
themselves. This occurred under the influence of local temperature fields formed in the
layer that is the core of the fountain and the peripheral zone of the layer.

According to the results of experiments on the study of crushing, the dependences of
the density of probability of crushing per unit time g0 on the magnitude of temperature
differences were obtained. The latter, as was found, provides the main factor in the thermal
crushing of granules. As is shown, (Figure 1) for a cycle-free process with an internal
source of granulation, the experimental values of the differential distribution function
of the obtained granules fit well between the distribution curves obtained by calculation
according to analytical Dependences (7) and (8).

These analytical dependences obtained for the limiting values of the parameter n
determine the boundaries for actual particle distribution functions, provided that the kernel
of the integrodifferential equation is a constant. However, if the actual functions reach
beyond the boundaries considered, then a different and a more complex type of kernel
is needed, which would lead to a significant increase in mathematical difficulties when
obtaining solutions.

The adequacy of the proposed model representations was also confirmed for the
process of granulating a finely dispersed product in a horizontal cylindrical granulator
with a fast-rotating rotor with fingers for intensive mixing of the material [45]. In the
experiments, an oil-containing waste disposal product mixed with alkaline earth metal
oxide was used to obtain a granular mineral additive in asphalt concrete mixtures. Bitumen
BDU 60/90 was used as a binder. The average particle diameter in the initial product was
120 microns with a density of 1.26 g/cm3. The experiments were carried out at different
speeds of rotation. At the same time, the amount of bitumen in all experiments was
12% (wt.) of the total amount of material. The comparison was carried out according to
the calculated and experimental values of the average mass of granules at the stage of the
process when the effects of crushing and coagulation were comparable, under different



Mathematics 2022, 10, 994 8 of 12

operating modes of the granulator. The results of the comparison showed that the Ratios
(16) and (17) accurately predict the mp value—see Figure 2.
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Figure 2. The dependence of the average particle mass mp on the rotation frequency of the rotor n in
a high-speed granulator. The line represents calculated values, the points—experimental values.

Consequently, Equation (1) is an acceptable basis, including in the analysis of pro-
cesses in which the coagulation and crushing of solid particles occur simultaneously.
Additionally, the Approximations (12) and (13) can be used for probabilistic estimation of
coagulation and particle crushing during the entire time of the process. The dependence
f (m) = N_(t)A2me−Am is flexible enough to correspond with sufficient accuracy to the
actual dynamics of changes to the granulometric composition in the periodic mode of
operation of the apparatus, or in a continuous process—provided that the design of the
apparatus ensures a mode of movement of the material close to ideal displacement.
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Another series of experimental studies aimed to verify the validity of the proposed
mathematical representations when describing particle enlargement in a gushing bed
apparatus [46]. In the experiments, granules of synthetic detergents with a particle diameter
of about 1 mm were used and sprayed with small particles of the same material with a
diameter of less than 0.2 mm. Water was supplied as a binding fluid. The experiments
were carried out in a continuous mode, the volume of the layer in the apparatus was
maintained as constant. The liquid-phase water was fed to the surface of the layer by a
mechanical nozzle, and the fine fraction for spraying onto the granules was fed through
a gas distribution grid, with a flow of heated air as a liquefying agent. To determine the
type of the initial distribution function of the initial granules, they were considered a
monofraction. In this case, the initial distribution function can be considered as a delta
function, ϕ0(r) = δ(r− r0). Here, ϕ0 = f (r)/N0 is the normalized distribution function for
the number of initial particles. Considering this, Equation (21) has the following form:

ϕ(r) =
1

Tu
e−

m−r0
Tu ∗ θ(r− r0) (22)

where θ(r− r0) is the Heaviside function at r− r0 ≥ 0, θ(x) = 1, and at r− r0 < 0, θ(x) = 0.
The estimation of the increment of enlarged particles according to Formula (22) and its
comparison with the experimental values obtained for the experimental conditions showed
a satisfactory convergence of the results. As shown in Figure 3, the deviation between them
is about 8%, which indicates the adequacy of both the theoretical and experimental results.
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It is shown in [47] that the proposed approach can also be used to describe the abrasion
of particles in suspended bed apparatuses, which is very important for many processes
involving the solid phase.

4. Conclusions

A methodological approach to modeling the processes of changing the dispersed com-
position of solid phase particles such as granulation, crystallization, pyrolysis and others,
is presented. Granulation should be considered as a complex process consisting of simpler
(elementary) processes such as continuous particle growth, agglomeration, crushing and
abrasion. All these elementary processes, which are also complex in themselves, usually
participate in the formation of the dispersed composition of particles and proceed simulta-
neously with the predominance of one process or another, depending on the method of its
organization and the physicochemical properties of substances.

Extensive experimental studies carried out by the authors indicate that the general
balance Equation (1) for the particle mass distribution function can serve as a universal
basis for a quantitative description of the evolution of the dispersed composition of the solid
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phase in technological apparatuses of periodic and continuous action. The paper presents
analytical solutions of this equation for some special cases that are of independent interest.

In addition, it is important to note that a direct numerical or analytical solution of the
integro-differential Equation (1) is impossible without experimental data on the kinetics
of particle size changes and the probability of their coagulation and crushing. Obtaining
such data in each specific case is an independent non-trivial task that requires certain
experimental skills. However, if such a problem is solved, then the possibilities of the
proposed approach are able to exhaustively assess the characteristics of the granulometric
composition of the solid phase at any stage of the process. So, by using the Ratios (7) and
(8), it is not difficult to calculate the parameters of the distribution of solid phase particles
at the outlet of the flow apparatus of ideal mixing in a continuous mode of the granulation
process. Ratios (10), (17) and (21) provide an opportunity to evaluate similar characteristics
for other types of processes. At the same time, the calculated ratios implicitly depend on
the design features of the devices and their working conditions (for example, after average
residence time), which helps to purposefully select the modes of movement of working
media in order to achieve the desired dispersed composition at the exit of the apparatus. In
practical terms, such a task is of considerable interest.

It is interesting to note that the approach proposed by the authors can also be applied
in areas aside from chemical technology. For instance, in [48,49] a similar mathematical
apparatus is used in constructing models of economic growth of market participants. In
addition, balance equations of the (1) equation type include a distribution function not by
size, but by the volume of capital.

Author Contributions: Conceptualization: O.M.F. and N.A.M.; methodology: V.P.M.; validation:
O.M.F. and A.V.G.; formal analysis: N.A.M.; research: V.P.M.; writing—original draft preparation:
O.M.F.; writing—review and editing: A.V.G.; supervision: V.P.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The research was funded by the Russian Science Foundation under grant agree-
ment No. 21-79-30029.

Conflicts of Interest: The authors declare that they have no conflict of interest requiring disclosure
in the present work.

References
1. Frolov, V.F.; Flisyuk, O.M. Granulirovanie vo Vzveshennom Sloe (Fluidized-Bed Granulation); Khimizdat: St. Petersburg, Russia, 2007.
2. Meshalkin, V.P.; Flisyuk, O.M.; Martzulevich, N.A.; Garabadzhiu, A.V. Theoretical and experimental analysis of change in the

dispersed composition of solid phase particles in process apparatus. Rep. Russ. Acad. Sci. 2021, 501, 32–36. [CrossRef]
3. Ohyama, M.; Amari, S.; Takiyama, H. Operation Design of Reaction Crystallization Using Homogeneity Flisyuk Evaluation for

the Quality Improvement of Agglomerated Crystalline Particles. Crystals 2021, 11, 844. [CrossRef]
4. Mazza, G.; Falcoz, Q.; Gauthier, D.; Flamant, G. A particulate model of solid waste incineration in a fluidized bed combining

combustion and heavy metal vaporization. Combust. Flame 2009, 156, 2084–2092. [CrossRef]
5. Soria, J.M.; Gauthier, D.; Falcoz, Q.; Flamant, G.; Mazza, G.; Hazard, D.J. Local CFD kinetic model of cadmium aporization during

fluid bed incineration of municipal solid waste. J. Hazard. Mater. 2013, 248–249, 276–284. [CrossRef]
6. Osman, A.; Goehring, L.; Patti, A.; Stitt, H.; Shokri, N. Fundamental Investigation of the Drying of Solid Suspensions. Ind. Eng.

Chem. Res. 2017, 56, 10506–10513. [CrossRef]
7. Kotzur, B.A.; Berry, R.J.; Zigan, S.; García-Triñanes, P.; Bradley, M. Particle attrition mechanisms, their characterisation, and

application to horizontal lean phase pneumatic Flisyuk conveying systems: A review. Powder Technol. 2018, 334, 76–105. [CrossRef]
8. Flisyuk, O.M.; Frolov, V.F.; Shininov, T.N. Mathematical Simulation of Granulation Process in a Speed Granulator. Theor. Found.

Chem. Eng. 2017, 51, 432–436. [CrossRef]
9. Flisyuk, O.M.; Martsulevich, N.A.; Krukovskii, O.N. Fluidized-Bed Granulation of Ammonium Sulfate from Solution Formed as

By-Product in Production of Manganese Oxides. Russ. J. Appl. Chem. 2016, 89, 800–804. [CrossRef]
10. Nazli, S.; Burcu, T.; Nazlıcan, Y. Effects of particle size distribution on some physical, chemical and functional properties of unripe

banana flour. Food Chem. 2016, 213, 180–186. [CrossRef]

http://doi.org/10.31857/S2686953521060078
http://doi.org/10.3390/cryst11080844
http://doi.org/10.1016/j.combustflame.2009.04.003
http://doi.org/10.1016/j.jhazmat.2013.01.015
http://doi.org/10.1021/acs.iecr.7b02334
http://doi.org/10.1016/j.powtec.2018.04.047
http://doi.org/10.1134/S0040579517040182
http://doi.org/10.1134/S1070427216050189
http://doi.org/10.1016/j.foodchem.2016.06.064


Mathematics 2022, 10, 994 11 of 12

11. Abbas, A.; Farizhandi, K.; Zhao, H.; Lau, R. Modeling the change in particle size distribution in a gas-solid fluidized bed due
to article attrition using a hybrid artificial neural network-genetic algorithm approach. Chem. Eng. Sci. 2016, 155, 210–220.
[CrossRef]

12. Ueda, S.; Miura, K.; Kawata, R.; Furutani, H.; Uematsu, M.; Omori, Y.; Tanimoto, H. Number-size distribution of aerosol particles
and new particle formation events in tropical and subtropical Pacific Oceans. Atmos. Environ. 2016, 142, 324–339. [CrossRef]
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